Rapid, large-scale wastewater surveillance and automated reporting system enabled early detection of nearly 85% of COVID-19 cases on a University campus
ABSTRACT: Wastewater based surveillance has gained prominence and come to the forefront as a leading indicator of forecasting COVID-19 infection dynamics owing to its cost-effectiveness and its ability to inform early public health interventions. A university campus could especially benefit from wastewater surveillance as they are characterized by largely asymptomatic populations and are potential hotspots for transmission that necessitate frequent diagnostic testing. In this study, we employed a large-scale GIS (Geographic information systems) enabled building-level wastewater monitoring system associated with the on-campus residences of 7614 individuals. Sixty-eight automated wastewater samplers were deployed to monitor 239 campus buildings with a focus on residential buildings. Time-weighted composite samples were collected on a daily basis and analyzed within the same day. Sample processing was streamlined significantly through automation, reducing the turnaround time by 20-fold and exceeding the scale of similar surveillance programs by 10 to 100-fold, thereby overcoming one of the biggest bottlenecks in wastewater surveillance. An automated wastewater notification system was developed to alert residents to a positive wastewater sample associated with their residence and to encourage uptake of campus-provided asymptomatic testing at no charge. This system, integrated with the rest of the 'Return to Learn' program at UC San Diego-led to the early diagnosis of nearly 85% of all COVID-19 cases on campus. Covid-19 testing rates increased by 1.9-13X following wastewater notifications. Our study shows the potential for a robust, efficient wastewater surveillance system to greatly reduce infection risk as college campuses and other high-risk environments reopen.
Comments